REGISTRATION CERTIFICATE
KV #19905-9705 PR dated 02.04.2013.
FOUNDERS
RESEARCH CENTRE FOR INDUSTRIAL DEVELOPMENT PROBLEMS of NAS (KHARKIV, UKRAINE)
According to the decision No. 802 of the National Council of Television and Radio Broadcasting of Ukraine dated 14.03.2024, is registered as a subject in the field of print media. ID R30-03156
PUBLISHER
Liburkina L. M.
SITE SECTIONS
Main page
Editorial staff
Editorial policy
Annotated catalogue (2011)
Annotated catalogue (2012)
Annotated catalogue (2013)
Annotated catalogue (2014)
Annotated catalogue (2015)
Annotated catalogue (2016)
Annotated catalogue (2017)
Annotated catalogue (2018)
Annotated catalogue (2019)
Annotated catalogue (2020)
Annotated catalogue (2021)
Annotated catalogue (2022)
Annotated catalogue (2023)
Annotated catalogue (2024)
Annotated catalogue (2025)
Thematic sections of the journal
Proceedings of scientific conferences
|
 Formation of Fuzzy Estimates of Initial Economic Indicators in Enterprise Management Kotsyuba O. S., Laba M. S.
Kotsyuba, Oleksiy S., and Laba, Maksym S. (2025) “Formation of Fuzzy Estimates of Initial Economic Indicators in Enterprise Management.” Business Inform 3:174–182. https://doi.org/10.32983/2222-4459-2025-3-174-182
Section: Economic and Mathematical Modeling
Article is written in UkrainianDownloads/views: 0 | Download article (pdf) -  |
UDC 658:330.4:519.86
Abstract: The article is dedicated to the problem of forming fuzzy estimates of initial economic indicators, the need for which arises in enterprise management. In formal terms, defining fuzzy estimates of initial indicators in a certain problematic situation represents the task of constructing membership functions of fuzzy sets. The study analyzes methods for finding membership functions that are used or can be recommended for use in estimating initial economic indicators that are part of enterprise management objectives: the quasi-statistics-based method; the pairwise comparison method; the landmark method; the anchor interval method. Specifically, their constructive features and practical applicability characteristics are considered. In terms of practical applicability characteristics, for each method, the possibility of purposefully obtaining a membership function corresponding to a fuzzy number, as well as the level of complexity in overcoming the unresolved information deficit, are analyzed. The latter is proposed to be understood as the complexity of overcoming the lack of information during the direct use of the method, which persists after collecting the data necessary for forecasting the considered economic indicator. Additionally, it has been identified that the bottleneck in obtaining a fuzzy estimate of the forecasted economic indicator in the form of a fuzzy number is ensuring its convexity. In the case of using the pairwise comparison method, ensuring the convexity property for the desired fuzzy estimate requires the introduction of special constraints. Based on the comparison results of the level of complexity in overcoming the unresolved information deficit for the analyzed methods, it has been identified that the least complex method in this aspect be the quasi-statistics-based method, and the most complex being the pairwise comparison method.
Keywords: uncertainty, fuzziness, fuzzy estimation, membership function, quasi-statistics, pairwise comparisons, reference points, reference intervals.
Tabl.: 1. Formulae: 3. Bibl.: 31.
Kotsyuba Oleksiy S. – Doctor of Sciences (Economics), Associate Professor, Professor, Department of Business Economics and Entrepreneurship, Kyiv National Economic University named after Vadym Hetman (54/1 Beresteiskyi Ave., Kyiv, 03057, Ukraine) Email: [email protected] Laba Maksym S. – Postgraduate Student, Department of Business Economics and Entrepreneurship, Kyiv National Economic University named after Vadym Hetman (54/1 Beresteiskyi Ave., Kyiv, 03057, Ukraine) Email: [email protected]
List of references in article
Bede, B. (2013). Mathematics of fuzzy sets and fuzzy logic. Springer-Verlag.
Bidiuk, P. I., Omelchenko, O. S., & Liubar, V. Yu. (2014). Intehralne otsiniuvannia pidpryiemstv mashynobuduvannia pry yikh restrukturyzatsii [Integral assessment of mechanical engineering enterprises during their restructuring]. Biznes Inform, 6, 262–269. https://www.business-inform.net/export_pdf/business-inform-2014-6_0-pages-262_269.pdf
Castiblanco Ru?z, F. A. (2015). Teor?a de los subconjuntos borrosos en el proceso presupuestario de las organizaciones (1? ed.). Universidad La Gran Colombia.
Dhurai, K., & Karpagam, A. (2016). A new membership function on hexagonal fuzzy numbers. International Journal of Science and Research, 5(5), 1129–1131.
Dymowa, L. (2011). Soft computing in economics and finance. Springer-Verlag.
Gavrysh, O. A., Kuznietsova, K. O., & Melnykova, V. A. (2023). Ryzyk-menedzhment budivelnykh pidpryiemstv proiektooriientovanoho typu [Risk management of project-oriented construction enterprises]. KPI im. Ihoria Sikorskoho.
Gil-Aluja, J. (2004). Fuzzy sets in the management of uncertainty. Springer-Verlag.
Gil-Lafuente, A. M. (2005). Fuzzy logic in financial analysis. Springer-Verlag.
Gnedenko, B. V. (1997). Theory of probability (6th ed.). CRC Press.
Hryhoruk, P. M. (2012). Problemy urakhuvannia nevyznachenosti v protsesi pryiniattia marketynhovykh rishen [Problems of accounting for uncertainty in the process of making marketing decisions]. Modeliuvannia rehionalnoi ekonomiky, 1, 250–263. http://nbuv.gov.ua/UJRN/Modre_2012_1_31
Kahraman, C., & Haktan?r, E. (2024). Fuzzy investment decision making with examples. Springer Nature Switzerland.
Kaufmann, A., & Gil Aluja, J. (1986). Introducci?n de la teor?a de los subconjuntos borrosos a la gesti?n de las empresas. Milladoiro.
Klir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: Theory and applications. Prentice Hall PTR.
Kotsyuba, O. S. (2018). Estimation of input financial and economic parameters of an investment project based on a fuzzy set approach. Problemy ekonomiky, 3, 240–245. https://www.problecon.com/export_pdf/problems-of-economy-2018-3_0-pages-240_245.pdf
Kuchta, D. (2010). Fuzzy production and operations budgeting and control. Production Engineering and Management under Fuzziness, 252, 299–327. https://doi.org/10.1007/978-3-642-12052-7_13
Maliar, M. M., & Polishchuk, V. V. (2018). Nechitki modeli i metody otsiniuvannia kredytospromozhnosti pidpryiemstv ta investytsiinykh proektiv [Fuzzy models and methods for assessing the creditworthiness of enterprises and investment projects]. RA "AUTDOR-ShARK".
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. The Psychological Review, 63(2), 81–97. https://doi.org/10.1037/h0043158
Nedosekin, A., & Kokosh, A. (2004). Investment risk estimation for arbitrary fuzzy factors of investment project. In International Conference on Fuzzy Sets and Soft Computing in Economics and Finance FSSCEF 2004 (Vol. 2, pp. 423–437). Instituto Mexicano del Petr?leo; RFSA.
Pathinathan, T., & Ponnivalavan, K. (2014). Pentagonal fuzzy number. International Journal of Computing Algorithm, 3, 1003–1005. https://www.academia.edu/7764315/Pentagonal_Fuzzy_Number
Pawlak, Z. (1982). Rough sets. International Journal of Computer and Information Sciences, 11(5), 341–356. https://doi.org/10.1007/BF01001956
Piegat, A. (2001). Fuzzy modeling and control. Springer-Verlag.
Poleshchuk, O., & Komarov, E. (2011). Expert fuzzy information processing. Springer-Verlag.
Saatу, Т. L. (1974). Measuring the fuzziness of sets. Journal of Cybernetics, 4(4), 53–61.
Saatу, Т. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281. https://superdecisions.com/sd_resources/Paper_ScalingMethod.pdf
Saatу, Т. L. (1980). The analytic hierarchy process. McGraw-Hill.
Siler, W., & Buckley, J. J. (2005). Fuzzy expert systems and fuzzy reasoning. John Wiley & Sons.
Siniavskaya, O. A., & Zhelezko, B. A. (2007). Fuzzy evaluation of the risk of investment in securities in the portfolio optimization problem. In Computer Data Analysis and Modeling: Complex Stochastic Data and Systems: Proceedings of the Eighth International Conference (Vol. 2, pp. 91–94). Publ. center BSU.
Slieptsov, A. I., & Zodenkamp, M. A. (2007). Pryiniattia rishen v skladnykh systemakh [Decision making in complex systems]. Vyd-vo NPU im. M. P. Drahomanova.
Vitlinskyi, V. V., & Velykoivanenko, H. I. (2004). Ryzykolohiia v ekonomitsi ta pidpryiemnytstvi [Riskology in economics and entrepreneurship]. KNEU.
Zheldak, T. A., Koriashkina, L. S., & Us, S. A. (2020). Nechitki mnozhyny v systemakh upravlinnia ta pryiniattia rishen [Fuzzy sets in management and decision-making systems]. NTU "DP".
Zgurovsky, M. Z., & Zaychenko, Y. P. (2016). The fundamentals of computational intelligence: System approach. Springer International Publishing.
|
FOR AUTHORS
License Contract
Conditions of Publication
Article Requirements
Regulations on Peer-Reviewing
Publication Contract
Current Issue
Frequently asked questions
INFORMATION
The Plan of Scientific Conferences
OUR PARTNERS
Journal «The Problems of Economy»
|